Meta Analysis of Functional Neuroimaging Data via Bayesian Spatial Point Processes.

نویسندگان

  • Jian Kang
  • Timothy D Johnson
  • Thomas E Nichols
  • Tor D Wager
چکیده

As the discipline of functional neuroimaging grows there is an increasing interest in meta analysis of brain imaging studies. A typical neuroimaging meta analysis collects peak activation coordinates (foci) from several studies and identifies areas of consistent activation. Most imaging meta analysis methods only produce null hypothesis inferences and do not provide an interpretable fitted model. To overcome these limitations, we propose a Bayesian spatial hierarchical model using a marked independent cluster process. We model the foci as offspring of a latent study center process, and the study centers are in turn offspring of a latent population center process. The posterior intensity function of the population center process provides inference on the location of population centers, as well as the inter-study variability of foci about the population centers. We illustrate our model with a meta analysis consisting of 437 studies from 164 publications, show how two subpopulations of studies can be compared and assess our model via sensitivity analyses and simulation studies. Supplemental materials are available online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.

Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a ...

متن کامل

A Bayesian Hierarchical Spatial Point Process Model for Multi-type Neuroimaging Meta-analysis.

Neuroimaging meta-analysis is an important tool for finding consistent effects over studies that each usually have 20 or fewer subjects. Interest in meta-analysis in brain mapping is also driven by a recent focus on so-called "reverse inference": where as traditional "forward inference" identifies the regions of the brain involved in a task, a reverse inference identifies the cognitive processe...

متن کامل

Bayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model

Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...

متن کامل

The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging.

Recent functional neuroimaging studies have provided a wealth of new information about the likely organization of working memory processes within the human lateral frontal cortex. This article seeks to evaluate the results of these studies in the context of two contrasting theoretical models of lateral frontal-lobe function, developed through lesion and electrophysiological recording work in no...

متن کامل

Empirical and substantive models, the Bayesian paradigm, and meta-analysis in functional brain imaging.

Functional neuroimaging research is currently rediscovering and adapting established statistical methods for its use, including design of experiments, the general linear model, contrasts, random field theory, longitudinal models, Fourier analysis, and general signal and image processing methods. This brief paper gives an example of comparative performance of five different statistical models ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Statistical Association

دوره 106 493  شماره 

صفحات  -

تاریخ انتشار 2011